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Patients with established type 2 diabetes display both
b-cell dysfunction and insulin resistance. To define
fundamental processes leading to the diabetic state,
we examined the relationship between type 2 diabetes
risk variants at 37 established susceptibility loci, and in-
dices of proinsulin processing, insulin secretion, and in-
sulin sensitivity. We included data from up to 58,614
nondiabetic subjects with basal measures and 17,327
with dynamic measures. We used additive genetic mod-
els with adjustment for sex, age, and BMI, followed by
fixed-effects, inverse-variance meta-analyses. Cluster
analyses grouped risk loci into five major categories
based on their relationship to these continuous glycemic
phenotypes. The first cluster (PPARG, KLF14, IRS1,
GCKR) was characterized by primary effects on insulin
sensitivity. The second cluster (MTNR1B, GCK) featured
risk alleles associated with reduced insulin secretion
and fasting hyperglycemia. ARAP1 constituted a third
cluster characterized by defects in insulin processing.
A fourth cluster (TCF7L2, SLC30A8, HHEX/IDE, CDKAL1,
CDKN2A/2B) was defined by loci influencing insulin
processing and secretion without a detectable change
in fasting glucose levels. The final group contained 20
risk loci with no clear-cut associations to continuous gly-
cemic traits. By assembling extensive data on continuous

glycemic traits, we have exposed the diverse mecha-
nisms whereby type 2 diabetes risk variants impact dis-
ease predisposition.

Type 2 diabetes is a metabolic disorder characterized by
impaired insulin secretion and reduced sensitivity to the
peripheral actions of insulin. Both genetic and environ-
mental factors contribute to the development of type 2
diabetes (1), but the fundamental mechanistic defects
contributing to the evolution of disease remain far from
clear. Recently, genome-wide association efforts have ex-
tended the number of loci robustly implicated in type 2
diabetes risk to .60 (2–5). Each of these loci contains
sequence variants that are causal for disease risk, and
elucidation of the mechanisms through which these loci
operate has the potential to reveal processes fundamental
to disease pathogenesis.

To date, systematic review of the effects of disease risk
variants on processes contributing to the diabetic state
has mostly been restricted to the examination of basal
indices of b-cell (BC) function or insulin sensitivity (2,3).
These studies have demonstrated that most, but not all,
of these loci exert their primary effects on disease risk

2158 Diabetes Volume 63, June 2014

G
E
N
E
T
IC

S
/G

E
N
O
M
E
S
/P

R
O
T
E
O
M
IC

S
/M

E
T
A
B
O
L
O
M
IC

S

http://crossmark.crossref.org/dialog/?doi=10.2337/db13-0949&domain=pdf&date_stamp=2014-05-09


through deficient insulin secretion rather than insulin re-
sistance (IR) (2,4–6).

Further dissection of these mechanisms requires more
intensive phenotyping in risk allele carriers and controls.
In principle, such studies, particularly if performed in
nondiabetic individuals, can provide readouts of the
status of various aspects of intermediary metabolism.
For example, disproportionately raised levels of circulating
fasting proinsulin (PI), compared with those of fasting
insulin (FI), reflect BC stress and impairment in early
insulin processing. Fasting 32,33 split PI provides a more
detailed assessment of the impact of genetic variants on

insulin processing (7). Dynamic tests of insulin secretion
following oral and/or intravenous glucose administration
can provide insights into early BC dysfunction and loss of
early insulin release (8). Studies of selected diabetes risk
loci conducted using more refined dynamic measures of
insulin secretion and/or sensitivity have, in the main,
corroborated the broad inferences obtained from basal
measures (9–13), but have often been underpowered
with respect to more detailed mechanistic insights. To
date, the most substantial effort to characterize the phys-
iology of risk allele carriers involved a survey of 19 loci
defined by their primary associations with quantitative
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glycemic traits, such as fasting glucose (FG) and FI, 8 of
which were also type 2 diabetes risk loci (14). This study
underscored the heterogeneity of genetic effects on glu-
cose homeostasis.

Here we expand upon that study to examine the effect
of a total of 37 type 2 diabetes risk loci across a broad
range of quantitative measures of glycemic metabolism. To
do this, within the Meta-Analyses of Glucose and Insulin-
Related Traits Consortium (MAGIC), we have gathered
basal and dynamic testing data from 15 studies providing
detailed measures of insulin processing (fasting PI and
32,33 split PI), insulin secretion (insulinogenic index and
acute insulin response [AIR]), insulin sensitivity (indices
derived from oral and intravenous tests of glucose-
stimulated insulin secretion) (15), and insulin clearance
(C-peptide), and combined these with existing published
data for FG, FI, and homeostasis model assessment
(HOMA) data from the MAGIC meta-analysis of fasting
traits (16). In doing so, we were able to demonstrate that
the mechanisms of action of these various disease risk loci
can be grouped into a number of specific categories.

RESEARCH DESIGN AND METHODS

Contributing Studies
The following three partially overlapping collections of
samples were used (Table 1, Supplementary Table 1):
1) nine studies with detailed physiologic basal and/or dy-
namic measures after oral glucose stimulation, from a total
of 23,443 individuals; 2) twenty-nine studies, including up
to 58,614 individuals, with fasting trait data available from
the MAGIC genome-wide meta-analysis (16); and 3) seven
studies, including 4,180 subjects, with intravenous-derived
measures of insulin sensitivity. All participants were adult,
nondiabetic (diabetes defined by clinical diagnosis, diabetes
treatment, or fasting plasma glucose levels of $7.0 mmol/L),
and of European ancestry. Individuals with impaired FG
levels or impaired glucose tolerance were maintained in
the analyses. Subjects provided informed consent, and all
studies were approved by local ethics committees.

Phenotypes
We collected available data from participating studies for
any of 14 intermediate quantitative glycemic phenotypes,
which were grouped as follows: (i) fasting glycemic traits
including FG (Nmax = 58,614), FI (Nmax = 52,379), and
derived HOMA indices of BC function (HOMA-B) and
IR (HOMA-IR) (Nmax = 50,908) (16); (ii) oral glucose tol-
erance test (OGTT)-derived measures, including insulino-
genic index (pmol/mmol, N = 11,268) and/or insulin
sensitivity indices (ISIs) (Supplementary Table 1), includ-
ing the Belfiore ISI (17) (Nmax = 10,348), the Stumvoll ISI
(18) (Nmax = 10,239), the Matsuda ISI (19) (Nmax =
10,364), and the Gutt ISI (20) (Nmax = 13,158); (iii) cir-
culating levels of fasting intact PI (pmol/L) adjusted for
concomitant FI (pmol/L), measured in plasma or serum
(Nmax = 13,912); (iv) intravenous measures (up to 4,180
individuals from seven studies), including glucose uptake

divided by steady-state insulin concentration (M/I) de-
rived from euglycemic-hyperinsulinemic clamp (Nmax =
2,626), insulin sensitivity index (SI) determined from
the frequently sampled intravenous glucose tolerance
test (Nmax = 1,173), and steady-state plasma glucose
(SSPG) from the insulin suppression test (Nmax = 381);
(v) AIR analyzed by the incremental area under the insulin
curve from 0 to 10 min (Nmax = 1,135); and (vi) C-peptide
levels (Nmax = 5,059) and 32,33 split PI (pmol/L) adjusted
for concomitant FI (pmol/L; Nmax = 2,568) ([ii]–[vi] are
summarized in Table 1).

Given the wide range of sample sizes available for
different traits, we divided these 14 phenotypes into two
groups based on a sample size cutoff of 10,000. This
resulted in 10 “principal” traits with data from .10,000
individuals ([i]–[iii] above) and 4 traits with data on fewer
individuals ([iv]–[vi] above). We focused initial analyses
on the principal traits.

Trait Normalization
Insulinogenic index, ISIs, PI, AIR, C-peptide, and 32,33
split PI were naturally log-transformed. Intravenous insulin
sensitivity measures (M/I, SI, and SSPG) were z score–
transformed to enable meta-analysis as a single intrave-
nous trait.

Single Nucleotide Polymorphism Definition and
Proxies
We included 37 of the 38 type 2 diabetes–associated loci
documented in the DIAGRAM consortium meta-analysis
(2). This subset of known risk variants was selected given
their relatively large effects on type 2 diabetes risk (ear-
liest discovered variants), identification in individuals of
European descent, and good representation on a genome-
wide association study or custom genotype panels within
the contributing studies. Variants at the fat mass– and
obesity-associated gene (FTO) were excluded given the
well-documented primary association with BMI, which me-
diates the effect of FTO on type 2 diabetes risk (21,22).
None of the other 37 loci has evidence for primary BMI
associations. At these 37 loci, we included data for the
lead single nucleotide polymorphism (SNP) and a total
of 126 alternative proxy SNPs. In studies where data
for the lead SNP were not available, we chose the best
proxy SNP for each locus on a study-specific basis, using
r2 measures from CEU HapMap (23) (Supplementary
Table 1). Quality control and exclusion criteria were as
previously described (14) (Supplementary Note, Supple-
mentary Table 1). Not all samples had called genotypes
on the sex chromosomes, and as a result the maximum
sample size for chromosome X locus DUSP9 was 7,642
individuals (i.e., ,10,000). We thus excluded this locus
from the main analyses.

Statistical Analysis
Linear regression was performed to test for association,
under an additive genetic model, between SNPs and
quantitative glycemic traits adjusting for age, sex, and

2160 Physiological Characterization of Known Type 2 Diabetes Loci Diabetes Volume 63, June 2014

http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db13-0949/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db13-0949/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db13-0949/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db13-0949/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db13-0949/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db13-0949/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db13-0949/-/DC1


T
ab

le
1
—
S
tud

ies
and

sam
p
le

sizes
o
f
p
hysio

lo
g
ic

g
lycem

ic
traits

stud
ied

S
tud

y
N
um

b
er

of
locicovered

Insulinogenic
ind

ex
B
elfiore

IS
I

S
tum

vollIS
I

M
atsuda

IS
I

G
utt

IS
I

P
I

M
/I

S
I

S
S
P
G

A
IR

C
-p
ep

tid
e

32,33
S
p
lit

P
I

E
ly

31
1,435

1,441
1,425

1,311
1,476

1,600
—

—
—

—
1,602

1,598

E
U
G
E
N
E
2

36
—

—
—

—
—

—
595

—
—

—
—

—

FH
S

35
—

—
—

—
2,599

5,752
—

—
—

—
—

—

FU
S
IO

N
10

—
—

—
—

—
—

—
538

—
557

925
—

M
E
S
Y
B
E
P
O

30
883

887
894

885
1,060

—
—

—
—

—
—

—

M
E
TS

IM
30

6,847
6,898

6,794
6,898

6,933
5,076

—
—

—
—

—
—

N
H
A
N
E
S

12
—

—
—

—
—

—
—

—
—

—
1,221

—

P
IV
U
S

29
—

—
—

—
—

911
—

—
—

—
—

—

Q
TL

Fam
ilies

34
262

265
267

274
268

—
—

261
—

214
274

—

R
IS
C

36
1,015

—
—

—
—

—
1,042

—
—

—
—

—

P
artners/R

oche
C
ohort

7
583

608
600

619
612

—
—

—
—

—
—

—

S
O
R
B
S

36
756

758
765

758
763

—
—

—
—

—
718

—

S
tanford

36
—

—
—

—
—

—
—

—
381

—
—

—

U
LS

A
M

29
978

987
976

984
989

979
989

—
—

—
—

979

U
N
G
92

35
—

—
—

—
—

—
—

374
—

373
374

—

TotalN
*

11,268
10,348

10,239
10,364

13,158
13,912

2,626
1,173

381
1,135

5,059
2,568

D
ata

are
the

num
b
er

ofind
ivid

uals
includ

ed
in

the
analysis,b

y
stud

y,unless
otherw

ise
stated

.A
lld

ata
have

b
een

ad
justed

for
age,sex,and

B
M
I.E

U
G
E
N
E
2,E

urop
ean

N
etw

ork
on

Functional
G
enom

ics
ofTyp

e
2
D
iab

etes;FH
S
,Fram

ingham
H
eart

S
tud

y;FU
S
IO

N
,Finland

-U
nited

S
tates

Investigation
ofN

ID
D
M

G
enetics

S
tud

y;M
E
S
Y
B
E
P
O
,M

etab
olisches

S
ynd

rom
B
erlin

P
otsd

am
S
tud

y;M
E
TS

IM
,M

etab
olic

S
ynd

rom
e
In

M
en

S
tud

y;N
H
A
N
E
S
,N

ationalH
ealth

and
N
utrition

E
xam

ination
S
urvey;P

IV
U
S
,P

rosp
ective

Investigation
ofthe

V
asculature

in
U
p
p
sala

S
eniors;Q

TL
Fam

ilies,Q
ualitative

Trait
Locus

Fam
ilies

S
tud

y;R
IS
C
,R

elationship
b
etw

een
Insulin

S
ensitivity

and
C
ard

iovascular
D
isease

S
tud

y;U
LS

A
M
,U

p
p
sala

Longitud
inalS

tud
y
of

A
d
ult

M
en.*Total

num
b
er

of
ind

ivid
uals

w
ith

p
henotyp

e,
nonm

issing
covariates,

and
genetic

d
ata

availab
le.

diabetes.diabetesjournals.org Dimas and Associates 2161



BMI within each cohort. Cohort-specific effect estimates
and SEs derived from the regression models were then
combined in an inverse variance–weighted fixed-effects
meta-analysis using GWAMA (24) or METAL (25). As-
sociated P values are reported without correction for
multiple testing. Two-sided P values ,0.05 were con-
sidered to be significant given high prior probabilities
for the association of established type 2 diabetes risk
loci (reported previously at a genome-wide significance
level of P , 5 3 1028) with glycemic traits (2,4,26,27).
To investigate the impact of risk variants on physiologic
traits, for selected trait pairs, we plotted the standard-
ized b-coefficient estimates of the effects to account for
differences in trait transformations and the power of
individual meta-analyses.

Cluster Analysis of Physiologic Traits and Type 2
Diabetes Loci
To explore the physiological basis of type 2 diabetes as-
sociations, we performed a primary cluster analysis using
principal traits only and a subsidiary analysis that in-
cluded all 14 traits. We also performed a cluster analysis
of the 36 loci (excluding DUSP9), which grouped their
effects on principal traits. We used meta-analysis z scores
to perform complete linkage hierarchical clustering and
aligned all effects to the disease risk–increasing allele. In
this type of cluster analysis, the distance between two
clusters is computed as the maximum distance between
a pair of traits/SNPs that map in separate clusters (28).
Locus clusters were defined by L2, a Euclidean distance
dissimilarity measure. The uncertainty of hierarchical
clustering was evaluated via multiscale bootstrap resam-
pling (29). Ten thousand bootstrap replicates were gener-
ated to compute a probability for the strength of support
for each dendrogram node and to evaluate topology sen-
sitivity to sample size for each phenotype. We sub-
sequently performed a centroid-based clustering analysis
to identify the most supported number of clusters, where
the full set of SNPs could be structured. In this clustering
method, orthogonal transformation results in a reduced
set of observations for each locus, translating 10 pheno-
types to two linearly uncorrelated principal components.
Dendrograms were created where markers were forced
into k groups (from two to eight), and the Calinski index
(30) was computed as a measure of clustering support. We
then performed principal component analysis on centroid-
based clustering results to visualize graphically the assign-
ment of SNPs to inferred clusters.

RESULTS

Association Meta-Analysis
After excluding DUSP9, we first examined the pattern of
trait associations across the 36 remaining loci. First, we
highlighted those specific trait-SNP associations with the
strongest statistical support (Table 2 and Supplementary
Tables 1 and 5). The strongest association was seen be-
tween type 2 diabetes risk alleles at the HHEX/IDE locus

and reduced insulinogenic index (P = 4 3 10221) (Supple-
mentary Fig. 1A). We also confirmed genome-wide levels
of significance for associations between 1) 32,33 split PI
and ARAP1, and 2) insulinogenic index and MTNR1B,
which were in line with previous findings in partially over-
lapping data sets (7,14,31–35), in addition to the estab-
lished overlapping associations with basal FG, FI, and PI.
Furthermore, we uncovered strong associations (which
here we define as P , 5 3 1025) among the following:
1) insulinogenic index and CDKAL1 (Supplementary Fig.
1B); 2) 32,33 split PI and HNF1A (Supplementary Fig. 1C);
and 3) AIR and MTNR1B, KCNQ1, and CDKN2A/B (Sup-
plementary Fig. 1D–F). For all variants showing at least
nominal association (P, 0.05) with AIR, the diabetes risk
allele reduced AIR. In the joint analysis of samples with
intravenously derived indices of insulin sensitivity, nom-
inally significant associations were observed between the
disease risk allele and reduced insulin sensitivity for the
IRS1 (P = 73 1024) and ADCY5 (P = 63 1023) loci (Table 2
and Supplementary Fig. 2A and B).

Cluster Analyses
Complete linkage cluster analysis focusing on the struc-
ture of trait relationships (Supplementary Fig. 3, principal
traits, and Supplementary Fig. 4, all traits) confirmed that
traits grouped in a meaningful manner were consistent
with expected physiological relationships. We observed,
for example, grouping of the four ISI measures and of
HOMA-B and insulinogenic index. The Calinski index,
which determines the best partitioning and the optimal
number of these trait clusters, was maximal at eight, in-
dicating no large subclusters (Supplementary Fig. 3B).

We next reclustered data, using principal traits only, to
define relationships among the 36 type 2 diabetes loci
(Fig. 1A). The unimodal distribution of the Calinski index
was maximal at five, with the same number of groups
emerging from an alternative clustering analysis based
on centroids (Supplementary Fig. 5). Group assignment
for the optimal Nclusters determined using the Calinski
index was coherent with results from linkage clustering.
On this basis, we defined four locus clusters with distinc-
tive phenotypic features (Fig. 1B), which we termed as
follows: IR; hyperglycemic (HG); PI processing; and BC.
The twenty remaining loci not included in these pheno-
typic clusters we describe as forming an unclassified (UC)
group. In bootstrap resampling (Fig. 1A), the baseline
branching nodes were highly supported (strength P $
0.84, with best support for a node defined as Pmax =
1.00, and absence of support as Pmin = 0) with the only
exception of the PI group where there was slightly less
evidence of separation from the BC-UC clade (strength
P = 0.64).

Four Clusters of Type 2 Diabetes Risk Loci With
Distinctive Phenotypic Features
Here we describe the features of each of the four clusters. To
visualize some of these groupings, Fig. 2 and Supplementary
Fig. 6 present selected scatter plots of physiological trait
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pairs. Associated P values reported in the text are selected
for illustrative purposes with full data detailed in Table 2
and Supplementary Tables 1 and 5.

The IR cluster contains four loci (IRS1, GCKR, PPARG,
and KLF14) and is characterized by the association be-
tween type 2 diabetes risk alleles and reduced insulin
sensitivity, as evidenced by higher HOMA-IR (IRS1 [P =
7 3 10210], GCKR [P = 4 3 10216], PPARG [P = 4 3 1026],
and KLF14 [P = 7 3 1027]) and by reduced ISIs, with the
strongest associations seen for decreased Matsuda ISI
(IRS1 [P = 2 3 1027], GCKR [P = 0.008], and PPARG
[P = 0.004]). The IR loci also tended to show elevation
of FG, FI, PI (IRS1 [P = 0.006], GCKR [P = 0.050]), and
C-peptide levels (IRS1 [P = 0.01] and GCKR [P = 0.008]).
We observed some evidence that carriers of risk alleles at
these loci had higher values for HOMA-B (IRS1 [P = 3 3
1027]) and insulinogenic index (IRS1 [P = 4 3 1024])
(Fig. 2A and Supplementary Fig. 6A), which we interpret
as likely to reflect, at least in truncated ascertainment

among nondiabetic individuals (see DISCUSSION). Given
access to data from the largest set of individuals yet char-
acterized for intravenous indices of insulin sensitivity
(Nmax = 4,180), we specifically evaluated the effects of
IR loci on these measures. We observed an association
between the disease risk variant at IRS1 and reduced in-
travenous measures of insulin sensitivity (P = 7 3 1024)
(Table 2), but no nominally significant associations were
seen at GCKR, PPARG, or KLF14. Dropping either FI or
HOMA-IR measures from the cluster analyses (these
traits are highly correlated) had only subtle effects on
cluster definitions and relationships: for example, in anal-
yses that retain FI but exclude HOMA-IR, three loci,
KCNQ1 [rs231362], JAZF1, and HMGA2 moved from
the UC group to the IR cluster. Adjustment for BMI im-
proved estimates of both basal and dynamic measures of
insulin sensitivity (data not shown).

The HG cluster comprises the risk loci mapping near
MTNR1B and GCK. Type 2 diabetes risk alleles at these

Figure 1—Cluster analysis of effects of 36 type 2 diabetes loci on principal physiologic traits. Clustering of traits with meta-analysis results
from at least 10,000 individuals (principal traits). The existence of five clusters was revealed using two clustering approaches. A: Complete
linkage dendrogram of type 2 diabetes SNPs with P values (%) indicating the robustness of each branching event (shown in red). We
named the clusters as HG loci linked to reduced BC function after glucose stimulation, IR loci with a primary effect on IR at basal
measurements, PI locus linked to decreased fasting PI, BC loci associated with defective BC function, and UC loci with no apparent
impact on glycemic measures. Strong support exists for the baseline branching notes (strength P $ 0.84), whereas branching of IR from
the BC-UC clade shows lesser evidence for support (strength P = 0.64). B: Calinski index computed on the centroid-based clustering of
type 2 diabetes SNPs provides further evidence for the existence of five locus groups.
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Figure 2—Scatter plots of standardized allelic effect size estimates for selected trait pairs. In each scatter plot, loci were assigned to the
groups defined from the cluster analysis of principal traits (groups highlighted by different colors). A: Insulinogenic index vs. FI: this plot
highlights the effects of loci linked to IR (PPARG, KLF14, IRS1, and GCKR) with respect to FI and insulinogenic index. B: Insulinogenic index
vs. FG: the plot reveals the largest impact of HG loci (MTNR1B and GCK) on FG driven by reduced BC function. Large negative effects on
insulinogenic index are also seen for CDKAL1 and HHEX/IDE, but with very modest effects on FG. C: HOMA-B vs. HOMA-IR: the plot
shows the separation of the BC, HG, and IR clusters. Cluster group colors are as follows: HG, orange; IR, green; PI, pink; BC, red; UC, blue.
Loci named in the box are coded numerically within the respective scatter plot.
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loci are associated with markedly reduced insulin secre-
tion, combined with fasting hyperglycemia, even in non-
diabetic individuals (Fig. 2B). The insulin secretory defect
is manifest in reduced levels of HOMA-B (MTNR1B [P = 43
10226] and GCK [P = 1 3 10211]), insulinogenic index
(MTNR1B [P = 1 3 10214], GCK [P = 0.03]) (Fig. 2B), and
AIR (MTNR1B [P = 4 3 1026], and GCK [P = 0.051]). There
was some evidence for inverse associations with insulin
sensitivity, with type 2 diabetes risk alleles associated with
higher levels of HOMA-IR (MTNR1B [P = 0.002] and GCK
[P = 4 3 1024]) (Fig. 2C), but no consistent associations
were found with ISIs or intravenous measures of insulin
sensitivity.

The PI cluster actually consists of a single locus, ARAP1
(also named CENTD2). The key feature of this locus is
that the type 2 diabetes risk allele is associated with lower
levels of intact PI (P = 23 10250) and 32,33 split PI (P = 13
1028) (Supplementary Fig. 6B and C), combined with
reduced levels of insulin secretion (insulinogenic index
[P = 2 3 1025] and HOMA-B [P = 3 3 1026]) (Supple-
mentary Fig. 6B and D) (7). Insulin sensitivity was also
slightly reduced, as shown by lower ISIs, with Matsuda
and Gutt ISIs being nominally significant (P = 0.033 and
0.050, respectively). Although excluded from the cluster
analysis because of smaller sample size, risk alleles at
DUSP9 were also associated with lower PI values (P =
0.035) (Table 2) and reduced insulinogenic index (P =
3 3 1024), indicating that this locus may share some
mechanistic overlap with ARAP1. However, in contrast
to ARAP1, the risk allele at DUSP9 was associated with
increased insulin sensitivity (e.g., Matsuda ISI, P = 9 3
1024).

The nine loci in the BC cluster (TCF7L2, SLC30A8,
HHEX/IDE, CDKAL1, CDKN2A/2B, THADA, DGKB, PROX1,
and ADCY5) are characterized by reduced insulin secre-
tion in the presence of increased PI and, in comparison
with the HG cluster, only modest increases in fasting
glycemia. For all nine loci, we observed associations
with lower levels of HOMA-B (Fig. 2C), higher levels of
FG, and lower levels of FI (Table 2). The strongest asso-
ciations were seen at TCF7L2, but all loci also showed
similar patterns of reduced insulinogenic index (Fig. 2B)
and AIR (Supplementary Fig. 6E), as well as increased
levels of PI (Supplementary Fig. 6C). There was little sys-
tematic evidence for effects on HOMA or intravenous
measures of insulin sensitivity (Supplementary Fig. 6F),
though the type 2 diabetes risk allele at ADCY5 displayed
reduced sensitivity on intravenous measures (P = 63 1023)
(Supplementary Fig. 6F).

The UC group includes 20 loci for which, despite large
sample sizes, detailed phenotyping, and established
effects on risk for type 2 diabetes, no systematic evidence
of association with basal or dynamic glycemic phenotypes
was detected. The only nominal associations observed
were at HNF1B (TCF2) (lower FI [P = 83 1024]) (Table 2)
and HNF1A (lower 32,33 split PI [P = 8 3 1026] and
insulinogenic index [P = 0.005]) (Table 2).

We observed no material difference in the overall
picture of trait associations when we compared results
from this study with those previously described by
Ingelsson et al. (14) in partially overlapping samples at
the eight loci examined in both.

DISCUSSION

We present here the most comprehensive report to date
concerning the role of type 2 diabetes risk loci on
physiologic trait variability in nondiabetic individuals. In
addition, this study includes the largest number of indi-
viduals phenotyped using gold standard intravenous-
derived measures of insulin sensitivity. Through cluster
analysis, we have shown that, in terms of diabetes risk
allele effect size on intermediate glycemic traits, type 2
diabetes risk loci fall into five broad categories.

The IR cluster loci, including those mapping near
PPARG, KLF14, IRS1, and GCKR, are characterized by con-
sistent effects across multiple indices of insulin sensitiv-
ity, in both the basal and stimulated state. Three of the
four IR loci (PPARG excluded) ranked in the lower half of
type 2 diabetes risk loci in terms of effect size: this may
indicate that some of the loci in the UC group act through
weak effects on insulin sensitivity (as has indeed been
suggested for HMGA2) (2). The observation that disease
risk alleles at IR loci are associated with some degree of
improved BC function (such as that measured by HOMA-B)
is likely to reflect a combination of complementary fac-
tors. An increase in insulin secretion as a result of higher
IR is a known physiological phenomenon, which occurs
until individuals decompensate and shift toward the de-
velopment of diabetes. Therefore, alleles that primarily
raise IR may be secondarily associated with improved in-
sulin secretion through a compensatory mechanism. In
addition, the apparent association with insulin sensitivity
may in part reflect the fact that analysis was restricted
to nondiabetic subjects: this can lead to a truncation ef-
fect, whereby individuals with genotypes that favor both
high IR and poor insulin secretion are preferentially
depleted from the analysis because of their diabetes pre-
disposition (6).

The PI cluster is limited to the type 2 diabetes risk
variant at ARAP1, with the cardinal feature being a marked
reduction in fasting PI levels in carriers of the disease risk
allele. The combination of diabetes risk reduced basal and
stimulated insulin secretion and reduced PI levels runs
counter to the usual epidemiological associations (7). Our
data therefore support previous assertions that the ARAP1
risk variant increases the risk of type 2 diabetes through
defects in the early steps of insulin production (7).

The HG cluster includes loci characterized by a prom-
inent reduction in basal and stimulated BC function
(35–37), resulting in a marked increase in FG levels.
This glycemic effect is consistent with the fact that the
type 2 diabetes risk alleles at these loci are associated
with modest reductions in basal insulin sensitivity (as mea-
sured by HOMA-IR). These associations with insulin
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action phenotypes did not, however, extend to the stim-
ulated measures and may simply reflect limitations in the
HOMA model. This cluster includes both GCK and
MTNR1B, and, although they share similar features in
terms of their effects on FG, HOMA-B, and insulin/
glucagon ratios (11), external data suggest that these
genes act through different mechanisms. In individuals
with maturity onset diabetes of the young type 2 (38),
severe loss-of-function mutations in GCK lead to impaired
glucose sensing and a higher homeostatic set point for
glucose. AtMTNR1B, several studies have shown that lower
insulin secretion is accompanied by markedly reduced in-
sulin sensitivity (11) and increased insulin response to
glucagon-like peptide 1 (39). The apparent lack of effects
on PI measures for MTNR1B, as for GCK, points to an
effect on the secretory function of BCs, rather than on PI
processing (14).

The BC cluster includes a number of loci associated
with defective insulin secretion but without the marked
glycemic effects seen in the HG cluster. These include
several of the loci with the strongest allelic effects on
diabetes risk, such as those at TCF7L2, SLC30A8,
CDKAL1, and CDKN2A/2B, suggesting that the distinction
from the loci in HG cluster is not simply a consequence of
the degree of allelic impact. Although the BC loci map to
a single cluster, there is a degree of heterogeneity with
respect to other traits. For example, disease risk alleles at
TCF7L2 and SLC30A8 are associated with increased PI
levels, reduced insulinogenic index, and lower FI levels,
underscoring defects in insulin processing and secretion
(7). In contrast, the risk alleles at HHEX/IDE, DGKB,
CDKAL1, PROX1, and CDKN2A/2B display reduced in-
sulinogenic index and AIR, with no effect on fasting PI
levels, suggesting defects during the first phase of insulin
response and early insulin secretion. These phenotypic
associations within the BC cluster highlight the potential
for further subdivision of loci according to pathophysio-
logical patterns.

The UC group combines all remaining loci, which,
although they are genome-wide significant for type 2
diabetes, display no discernible impact on glycemic
measures across the large sample sets assembled here.
Most of these loci rank in the lower half of signals in
terms of type 2 diabetes effect size, and modest
functional impact may offer a partial explanation for
this observation. However, it is notable that the UC
group includes many of the loci where the common
variant effects are highly likely to be mediated by
transcripts implicated in monogenic and syndromic
forms of diabetes (including HNF1A, HNF1B [40],
KCNJ11 [41], and WFS1 [42]). Thus, even in the set-
ting where rare coding mutations result in severe ab-
rogation of islet function, and common variants acting
through those same genes influence type 2 diabetes
risk to stringent levels of significance, those same com-
mon variants can also be compatible with normal glu-
cose homeostasis (2).

This study combined information from a large number
of individuals phenotyped using intravenous measures of
insulin sensitivity, including .2,600 subjects examined
using the gold standard euglycemic-hyperinsulinemic
clamp. Overall, the data do not support the view that
the combination of intravenous measures used in this
study offers a sufficient boost in precision to compensate
for the reduction in sample size when compared with the
numbers available for the basal or OGTT-derived mea-
sures. Except at IRS1 and ADCY5, neither the intravenous
measures nor the OGTT-derived ISIs generated powerful
signals of association with deficient insulin action, even at
loci where the existing evidence for an effect on insulin
sensitivity is compelling (e.g., PPARG, KLF14 [2,43]).

The study presented here is the largest investigation of
its kind published to date; we set out to maximize the
sample size for each trait included. One consequence of this
strategy is that the characteristics of the particular samples
informative for each trait may differ, raising the possibility
of artifacts when comparing genotypic associations across
traits. However, the extent to which our findings are both
internally consistent, and in broad agreement with pub-
lished data describing more detailed phenotypic studies of
individual variants, provides considerable reassurance. An
alternative strategy, which restricted analyses to a small
core of individuals with data available for all traits, would
have resulted in a substantial loss of power.

We recognize some other limitations of this study, and
of others of its kind. First, the complexity of the
metabolic phenotypes examined, the longitudinal dimen-
sion of diabetes development and progression, and the
relative imprecision of the experimental tools at our
disposal limit the inferences that are possible. This is
most obviously seen in the large numbers of loci, which
though having genome-wide significance for type 2
diabetes, show no evidence of a relationship with in-
termediate metabolic traits. We also note, for example,
that the measures of early insulin secretion used (insu-
linogenic index and AIR) may, in part, reflect insulin
clearance, a trait that was not evaluated directly. Second,
in the interests of avoiding the secondary effects of
diabetes and its treatment, analyses were restricted to
nondiabetic individuals: this is likely to have introduced
some truncation effects such as the apparent enhance-
ment of BC function for disease risk alleles disrupting
insulin sensitivity. These have the potential to lead to
incorrect inference, if not recognized as such (6,44).
Third, the variants we have examined are not, in most
cases, known to be causal for the association signals
detected, leaving open the possibility that, at some loci,
the causal alleles, once identified, may have more pro-
nounced effects on intermediate traits than the variants
studied here. Finally, additional recently published disease
associations (3) of variants with lesser genetic effects
were not considered. Future efforts to extend our study
to incorporate these variants will likely require substan-
tially larger sample sizes.
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In summary, in this examination of the intermediate
metabolic phenotypic associations of proven type 2 di-
abetes risk alleles, we have demonstrated that the loci fall
into a limited number of broad mechanistic categories.
These highlight the diverse mechanisms contributing to
individual risk of disease. These data will guide future
experimental studies that will use more specific, tailored
tests to further dissect these key pathogenetic processes.
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